skip to main content


Search for: All records

Creators/Authors contains: "Judt, Falko"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Numerical weather and climate models continue to struggle with simulating equatorial waves and tropical rainfall variability. This study presents a potential remedy—high‐resolution global models with explicitly resolved convection. A series of global nonhydrostatic simulations was produced with horizontal cell spacings between 3.75 and 480 km; the share of resolved precipitation in these simulations ranged from 88% to 2%. The simulations in which convection was mostly resolved produced much more realistic equatorial waves than the simulations in which convection was mostly parameterized. Consequently, the simulations with resolved convection produced more realistic precipitation patterns and precipitation variances. The results demonstrate that high‐resolution global models with explicitly resolved convection are a promising tool to improve tropical weather forecasts and climate projections.

     
    more » « less
  2. Abstract

    This study investigates the effects of resolved deep convection on tropical rainfall and its multi‐scale variability. A series of aquaplanet simulations are analyzed using the Model for Prediction Across Scales‐Atmosphere with horizontal cell spacings from 120 to 3 km. The 3‐km experiment uses a novel configuration with 3‐km cell spacing between 20°S and 20°N and 15‐km cell spacing poleward of 30°N/S. A comparison of those experiments shows that resolved deep convection yields a narrower, stronger, and more equatorward intertropical convergence zone, which is supported by stronger nonlinear horizontal momentum advection in the boundary layer. There is also twice as much tropical rainfall variance in the experiment with resolved deep convection than in the experiments with parameterized convection. All experiments show comparable precipitation variance associated with Kelvin waves; however, the experiment with resolved deep convection shows higher precipitation variance associated with westward propagating systems. Resolved deep convection also yields at least two orders of magnitude more frequent heavy rainfall rates (>2 mm hr−1) than the experiments with parameterized convection. A comparison of organized precipitation systems demonstrates that tropical convection organizes into linear systems that are associated with stronger and deeper cold pools and upgradient convective momentum fluxes when convection is resolved. In contrast, parameterized convection results in more circular systems, weaker cold pools, and downgradient convective momentum fluxes. These results suggest that simulations with parameterized convection are missing an important feedback loop between the mean state, convective organization, and meridional gradients of moisture and momentum.

     
    more » « less